Field Evaluation of Radon Fluxes from In-Service Disposal Facilities for Uranium Mill Tailings

Craig H. Benson

University of Virginia/CRESP

Alex Michaud

GEI Consutants

William H. Albright

Desert Research Institute

Mark Fuhrmann

US Nuclear Regulatory Commission

William J. Likos
University of Wisconsin-Madison
Kuo Tian
George Mason University/CRESP
W. Jody Waugh
Navarro Research and Engineering, Inc
Morgan M. Williams
University of California, Berkeley

Typical Disposal Site – Design for 1000 yr

How do Radon Barriers Work?

 Radon transport primarily controlled by diffusion (high to low concentration)

$$J = -nD \frac{\partial C}{\partial z} \approx nD \frac{DC}{Dz}$$

 D_{air} : $10^{-5} \text{ m}^2/\text{s}$

 $D_{water}: 10^{-9} \text{ m}^2/\text{s}$

 D_{solid} : ~ 0

Concentration

High dry unit weight (solids content)

High water saturation

Just Dry of Optimum

- Specimen compacted with standard Proctor energy (ASTM D 698) at w = 16% (1% dry of optimum)
- Large interclod pores are still visible, but clay is visible softer and more remolding is apparent
- $K \sim 10^{-5}$ cm/s

B

Wet of Optimum

- Specimen compacted with standard Proctor energy (ASTM D 698) at w = 20% (3% wet of optimum)
- Only micro-scale pores exist.
 Clods fully remolded and interclod voids are eliminated.
- K $\sim 10^{-9}$ cm/s

C

Challenges – Predicting the Future

How will these barriers change over centuries?

Vegetative Succession

Dust Deposition

Soil Formation (desiccation cracking, freeze-thaw)

Bio-turbation

- Does pedogenesis soil cause changes in radon diffusion coefficient and flux?
- Does pedogenesis cause changes in hydraulic properties and percolation?
- Can we design barriers that are resilient in a natural system?

Pedogenesis in Barrier Layers

As-Built Saturated Hydraulic Conductivity, K $_{\rm sa}$ (m/s)

Similar Impact on Radon Diffusion?

Contrasting Climates for Field Sites

Measuring Radon Flux - Surface

- 1. Expose Radon Barrier
- 2. Install & Seal Flux Chamber
- 3. Measure Radon Buildup

Flux Chamber: Small to Large

Calculating Radon Flux – RAD7 Data

Typical Radon Buildup Curve

Mass Balance

$$C(t) = \left(C_i - \frac{J_o A}{V(\lambda + D)}\right) e^{-(\lambda + D)t} + \frac{J_o A}{V(\lambda + D)}$$

Where:

Equation: Chao et. al. (1997)

 $C(t) = concentration (Bq/m^3)$ at time = t (s)

 C_i = initial Rn conc. in chamber (Bq/m³)

 $J_o = the initial Rn Flux rate (Bq/m^2s)$

 $A = area of surface (m^2)$

V =the volume of the chamber (m^3)

 λ = the decay constant (s⁻¹)

D =the back diffusion rate (s^{-1})

Methodology accounts for back diffusion from mass build up.

Falls City – Vegetation & Scale Effects

Results – Riprap Slope vs Top Deck Falls City, TX

Results – Riprap Slope vs Top Deck

Riprap 'mulch' retains water -- increasing water saturation.

Results – Seasonal Ponding

Impact of Water Saturation from Seasonal Ponding

Higher water saturation – lower Rn flux Nearly all fluxes below regulatory limit

Deep Rooted Vegetation

Results – Deep Rooting Vegetation

Higher water saturation – lower Rn flux Macrostructure contribute?

Ant Mound at Bluewater, NM

Fluxes at Ant Mound

Ant mound yields lower water saturation -- passive venting.

Macrostructure contribute?

Fluxes at Shirley Basin South

- Very low Rn flux at site.
- High flux from tailings.
- Rn barrier is performing very well.

Lessons Learned

- Fluxes below regulatory requirement, but higher than as-built (4-10x). What is longterm condition?
- Fluxes higher below features that contribute to lower water saturation (ant mound, salt bush). Can we control long term?
- No apparent scale effect similar fluxes with large-scale and smaller flux chambers.